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Polytopes

Definition

Polytope: convex hull of finitely many points in Rn

bounded intersection of finitly many half-spaces in Rn
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Faces

Definition
Face: Pc :=

{
x ∈ Rn ; ⟨x, c⟩ = maxy∈P ⟨y , c⟩

}
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•
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Face lattice
Face lattice: poset of inclusions of faces

• •
•

••

• •
•

••

• • •
•

••

• • •
•

••
•

• •
•

•••
• •

•
•••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

Germain Poullot Minkowski indecomposability of polytopes 4 / 24



Face lattice
Face lattice: poset of inclusions of faces

• •
•

••

• •
•

••

• • •
•

••

• • •
•

••
•

• •
•

•••
• •

•
•••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

Germain Poullot Minkowski indecomposability of polytopes 4 / 24



Face lattice
Face lattice: poset of inclusions of faces

• •
•

••

• •
•

••

• • •
•

••

• • •
•

••
•

• •
•

•••
• •

•
•••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

Germain Poullot Minkowski indecomposability of polytopes 4 / 24



Face lattice
Face lattice: poset of inclusions of faces

• •
•

••

• •
•

••

• • •
•

••

• • •
•

••
•

• •
•

•••
• •

•
•••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

Germain Poullot Minkowski indecomposability of polytopes 4 / 24



Face lattice
Face lattice: poset of inclusions of faces

• •
•

••

• •
•

••

• • •
•

••

• • •
•

••
•

• •
•

•••
• •

•
•••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

• •
•

••

Germain Poullot Minkowski indecomposability of polytopes 4 / 24



Deformations (weak Minkowski summands)
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Minkowski sum

Definition
P, Q polytopes. Minkowski sum:

P + Q =
{
p + q ; p ∈ P, q ∈ Q

}
N.B. Vert(P + Q) ⊆ Vert(P) + Vert(Q)

+ =
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Minkowski sum

= +
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Minkowski summands

Definition
Q is a Minkowski summand, a.k.a. deformation, of P when there
exists R and λ > 0 with:

λP = Q + R

Deformation cone: DC(P) =
{

Q ; Q is a deformation of P
}

Indecomposable: deformations of P are translated-dilations of P

What is the best way to write P as a Minkowski sum ?
• With the fewest number of (indecomposable) summands ?
• With the (indecomposable) summands of smallest dimension ?
• Respecting some symmetries ?
• . . .

=⇒ What is the structure of DC(P) ?
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Minkowski summands

= +

+

+ +

+
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Deformation

Observation
If P = Q + R, then the edges of P “are” edges of Q or of R.
⇒ I can write deformations of P using edge-length vectors.
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Deformations of 3-dim permutahedron

Permutahedron Π4 Sequence of deformations of Π4
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Edge-length deformation cone
Theorem
Q deformation of P ⇔ same edge-directions, but different lengths

Definition
Edge-length deformation cone: DC(P) = {Q ; Q same edge-dir P}

✓✓✓✗ Parametrization:

edge-length vector:
ℓ =

(
ℓe

)
e edge

Cycle equations:
linear equations on ℓ
ℓe ≥ 0 for all e edge

Pℓ = start at a vertex, find the
coordinates of the other vertices
from the graph of P and ℓ
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Cycle equations

u2u3

u4

u5 u6

u1

For F a 2-dim face of P:∑
e

ue = 0 , ue unit vector

hence ∑
e

ℓeue = 0
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Summary on DC(P)

DC(P)

Q ℓ h
Minkowski summands edge-lengths heights on rays

Q1 + Q2 ℓ1 + ℓ2 h1 + h2
Dilation λQ λℓ λh
Translations Has been fixed Lineal

edge directions normal fan NP
complicated Cycle equations Wall-crossing ineq.

V -description H-description

Polytope algebra Weight algebra Polynomial algebra

DC(P) is a ray = P Minkowski indecomposable
DC(P) is simplicial cone = P has unique Minkowski decomposition
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Graph of edge dependencies
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Cycle equation of a triangle, quadrilateral

•◦
•◦

•◦
•◦

•◦
•◦

•◦
•◦

•◦
•◦

•◦
•◦

Triangle:
3 variables (= lengths of the edges)

2 equations (= 1 equation in dimension 2)
⇒ dim(space of solutions) = 1
⇒ Indecomposable
⇒ If I know the length of 1 edge, I know the length of the others.
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Graph of edge dependencies
Graph of edge dependencies ED(P):
nodes: edges of P
arcs: link two dependent edges, i.e. I can deduce the length of one
from the length of the other, using the cycle equations
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The two problems

Problem 1:
How to find edges of ED(P).

Problem 2:
If I have enough edges in ED(P), what can I conclude on DC(P) or
on the indecomposability of P?

A Gale’s criterion, ’54
All 2-faces of P are triangles ⇒ P indecomposable.

“triangles” → edges in ED(P)
“all 2-faces” → enough edges in ED(P)
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Problem 1: creating edges
In ED(P), two nodes e, f (∈ edges of P) are linked if, e.g.:
• in a common triangle (not necessarily a 2 -face),

• belong to a cycle of edges which spans a full-dim space,
• belong to an indecomposable sub-graph of P,
• are opposite in a trapezoid,
• are in a sub-graph of P which projects down to indecomposable,
• . . . (there is a nicer way to write these properties)
+ implicit edges
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• belong to an indecomposable sub-graph of P,
• are opposite in a trapezoid,

• are in a sub-graph of P which projects down to indecomposable,
• . . . (there is a nicer way to write these properties)
+ implicit edges
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Problem 2: consequences of ED(P)

Theorem (Padrol–P. ’25)
If ED(P) is connected, then P is indecomposable

S ⊆ V (P) is dependent if for all u, v ∈ S, there is a path (in G(P))
of dependent edges between u and v .

Theorem (Padrol–P. ’25)
If there exists a set S of dependent vertices such that every facet
contains a vertex of S, then P is indecomposable.

Corollaries: Gale ’54, Shepard ’63, Kallay ’82, McMullen ’87,
Yost–Przes lawski ’08 & ’16 criteria. . .
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Beyond

Corollary (Padrol–P. ’25)
If there is S ⊆ V (P), and X1, . . . , Xr dependent sets of edges with
• any two vertices of S are connected via

⋃
i Xi , and

• every facet of P contains a vertex of S,
then: dimDC(P) ≤ r .

(a) Triang. cupola (b) Sum of 2 triangles (c) Chiseled cube

dimDC(P) = 2, only one Minkowski decomposition (in 2 terms)
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Beyond

= +

dimDC(P) = 2, this is the only Minkowski decomposition
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New indecomposable generalized permutahedra
Generalized permutahedra: edge directions are e i − ej for i ̸= j
Edmonds problem ’70: find all indecomposable gene. permut.

The graphical zonotope of G = (V , E ) is: ZG =
∑

i j∈E [e i , ej ]

Theorem (Padrol–P. ’25)
For all complete bipartite graphs Kn,m (except n = m = 2), it is
possible to truncate 1 or 2 vertices of ZKn,m to obtain an
indecomposable generalized permutahedron.

••

•

•

•
••

•

•

◦◦

◦

◦

◦
◦◦

◦

◦

•

•

•
•

•

•

◦

◦

◦
◦

◦

◦

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

•◦

◦

◦

◦

◦

◦

◦

◦◦◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

•
•

••

•

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

◦

◦
◦

◦◦

◦

◦

◦
◦

◦

◦

◦

◦
◦

◦
◦

◦

◦

◦

◦

◦

◦

◦

◦

This gives 2
⌊

n−1
2

⌋
new indecomposable gene. permutahedra

Loho–Padrol–P.’25: we create 22n−2 indecomposable gene. permut.
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Besides

Other applications:
• parallelogramic Minkowski sums, product of polytopes
• “autonomous and dependent” parts of ED(P) give rays of DC(P)
• you can stack/delete vertices on polytopes, study
indecomposability
• you can deal with zonotopes whose 2-faces are parallelograms
• new proof: matroid pol. indecomposable ⇔ matroid connected
• you use combinatorics on regular polytopes instead of geometry
• . . .

Be careful, ED(P) is not always sufficient for recovering DC(P).
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Merci ! Thank you!



Bonus slides...



What else do I do?

Submodular cone: “Many rays of the submodular cone”

Linear programming: “Vertices of the monotone path polytopes of
hypersimplicies” & “Pivot polytopes of products of simplices and
shuffles of associahedra”

Random polytopes: “Unimodality of the number of paths per
length on polytopes: Examples, counter-examples, and central
limit theorem”

Ehrhart theory, triangulations: “Ehrhart non-positivity and
unimodular triangulations for classes of s-lecture hall simplices”

3D polytopes, framing lattices, polytope/weight algebra,
hypergraphs, Grey codes,. . .

Anything that might contain a polytope somewhere is interesting !!
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Parallelogramic Minkowski sums
P, Q are in parallelogramic position if no edge of P is in a plane
spanned by the 2-faces of Q

Theorem (Padrol–P. ’25)
P, Q in parallelogramic position: DC(P + Q) ≃ DC(P) × DC(Q).

(a) Diminished
trapezohedron (b) Gyrobifastigium

Corollary (Padrol–P. ’25)
DC(P × Q) ≃ DC(P) × DC(Q)
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