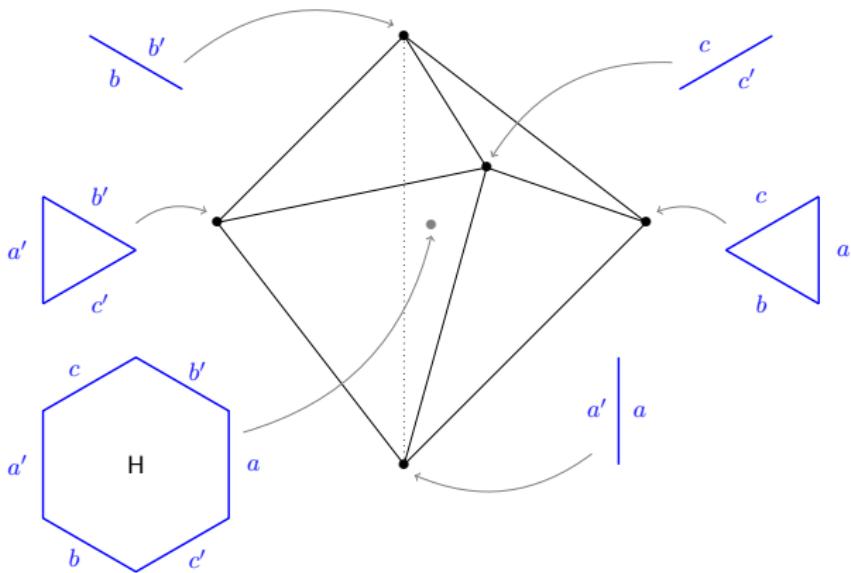


Minkowski indecomposability of polytopes

Germain Poullot with Arnau Padrol

ArXiv: 2512.05307



1 What is a polytope?

- Two definitions of polytopes
- Faces and normal fans

2 Deformations (weak Minkowski summands)

- Minkowski decomposition
- Cone of deformations

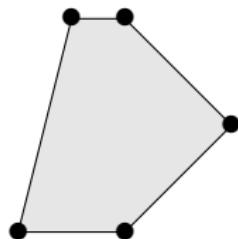
3 Graph of edge dependencies

- Triangle, parallelograms
- Graph of edge dependencies
- Applications

What is a polytope?

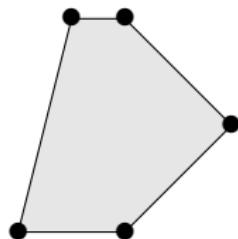
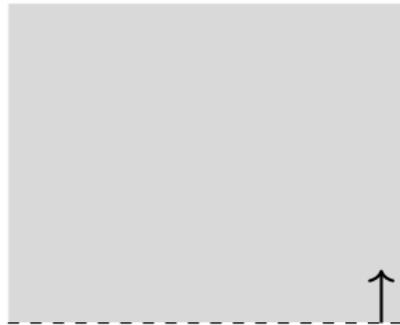
Definition

Polytope: convex hull of finitely many points in \mathbb{R}^n



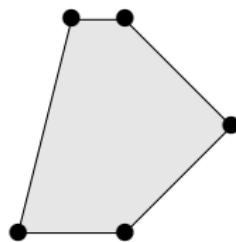
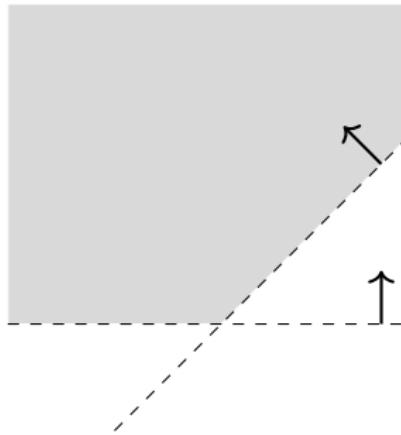
Definition

Polytope: convex hull of finitely many points in \mathbb{R}^n
bounded intersection of finitely many half-spaces in \mathbb{R}^n



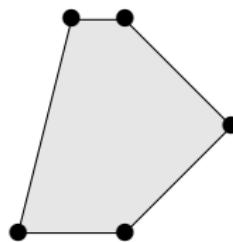
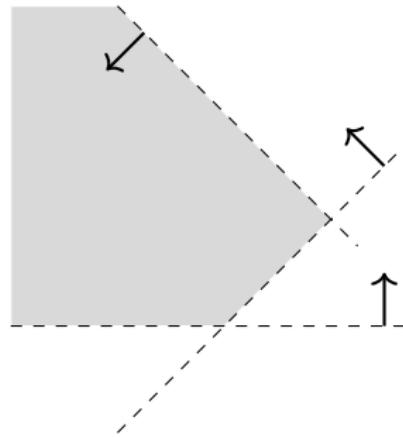
Definition

Polytope: convex hull of finitely many points in \mathbb{R}^n
bounded intersection of finitely many half-spaces in \mathbb{R}^n



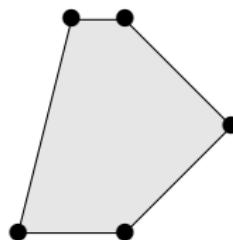
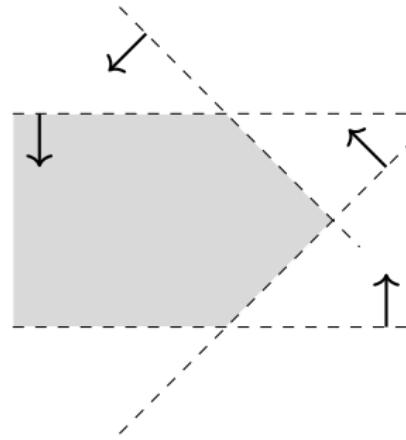
Definition

Polytope: convex hull of finitely many points in \mathbb{R}^n
bounded intersection of finitely many half-spaces in \mathbb{R}^n



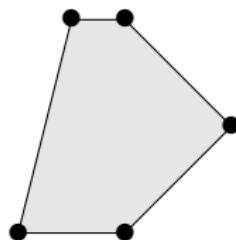
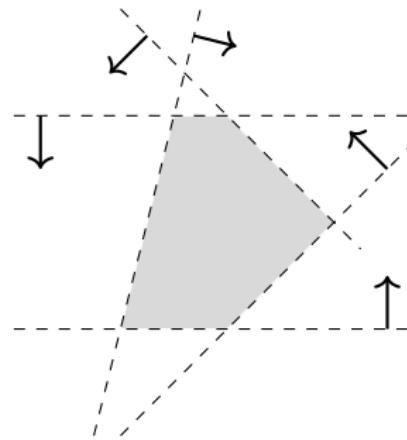
Definition

Polytope: convex hull of finitely many points in \mathbb{R}^n
bounded intersection of finitely many half-spaces in \mathbb{R}^n



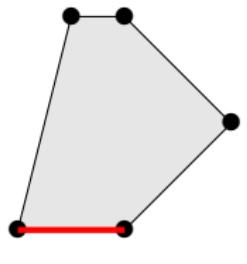
Definition

Polytope: convex hull of finitely many points in \mathbb{R}^n
bounded intersection of finitely many half-spaces in \mathbb{R}^n



Definition

Face: $P^c := \{x \in \mathbb{R}^n ; \langle x, c \rangle = \max_{y \in P} \langle y, c \rangle\}$



P

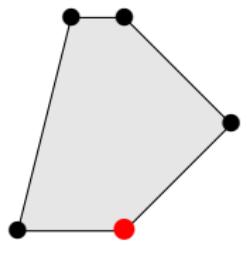
Definition

Face: $P^c := \{x \in \mathbb{R}^n ; \langle x, c \rangle = \max_{y \in P} \langle y, c \rangle\}$

P

Definition

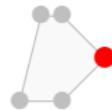
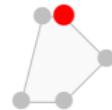
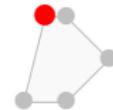
Face: $P^c := \{x \in \mathbb{R}^n ; \langle x, c \rangle = \max_{y \in P} \langle y, c \rangle\}$



P

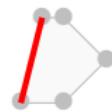
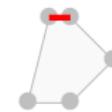
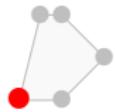
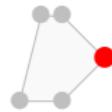
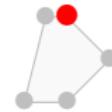
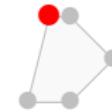
Face lattice

Face lattice: poset of inclusions of faces



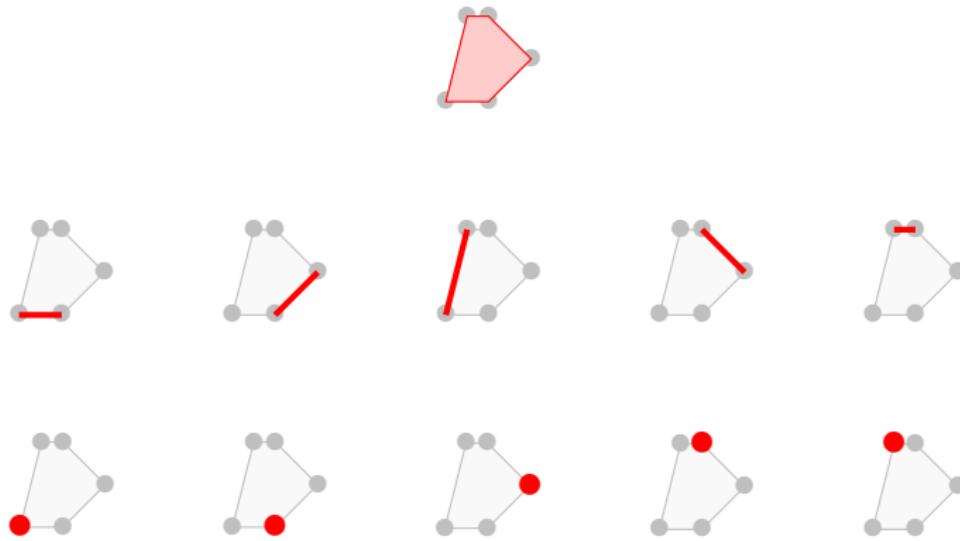
Face lattice

Face lattice: poset of inclusions of faces



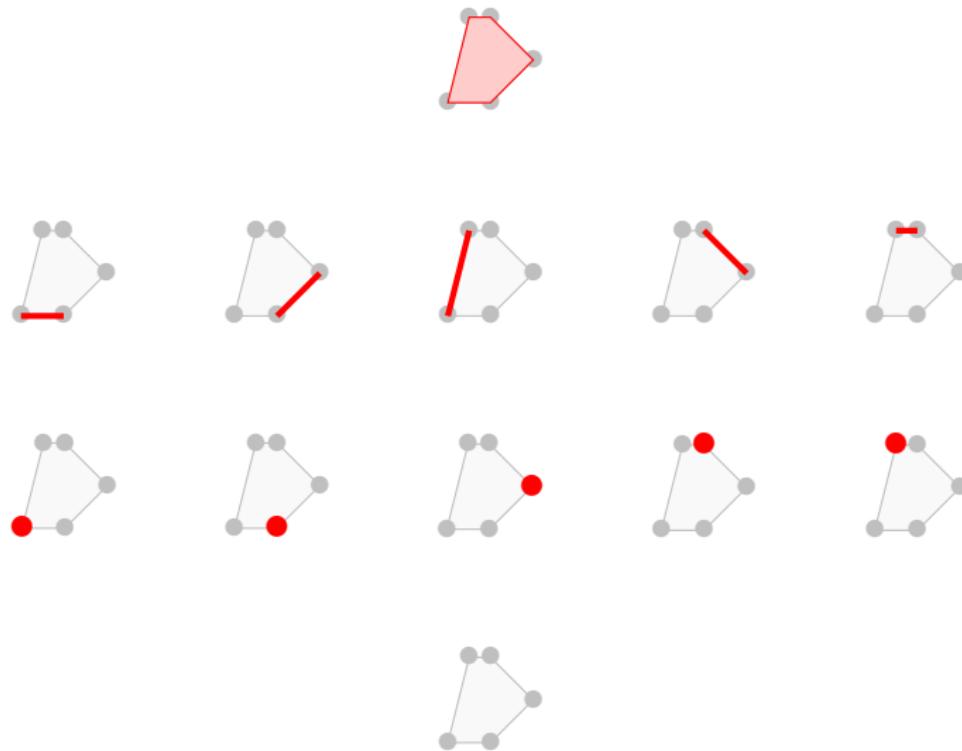
Face lattice

Face lattice: poset of inclusions of faces



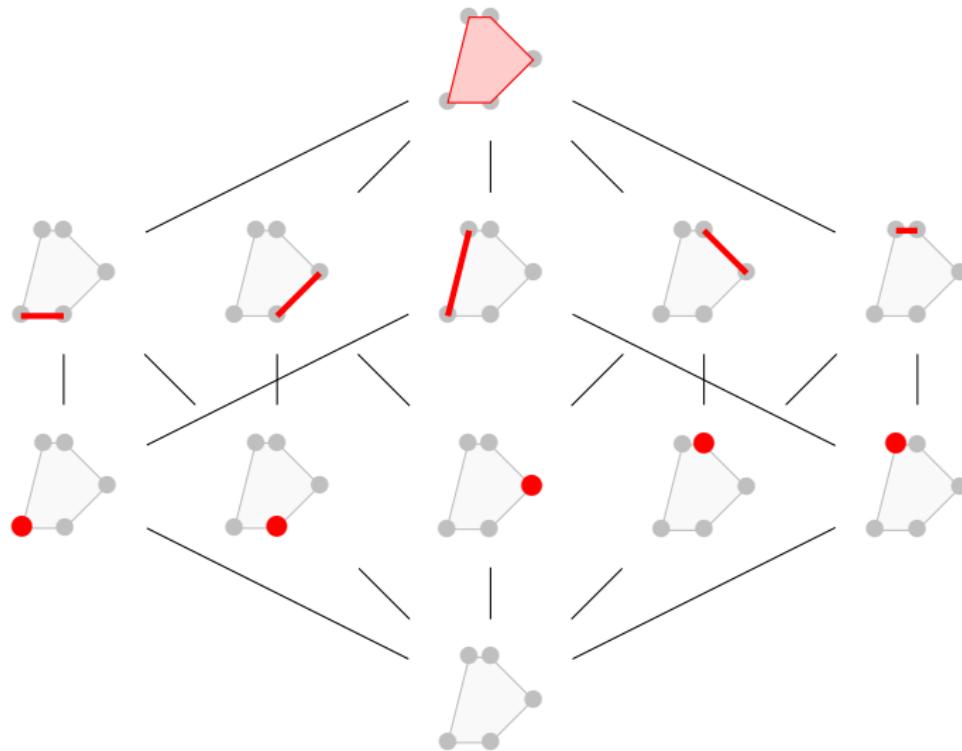
Face lattice

Face lattice: poset of inclusions of faces



Face lattice

Face lattice: poset of inclusions of faces



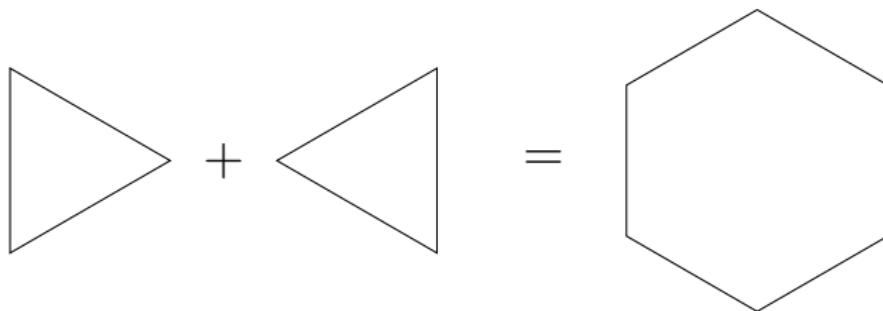
Deformations (weak Minkowski summands)

Definition

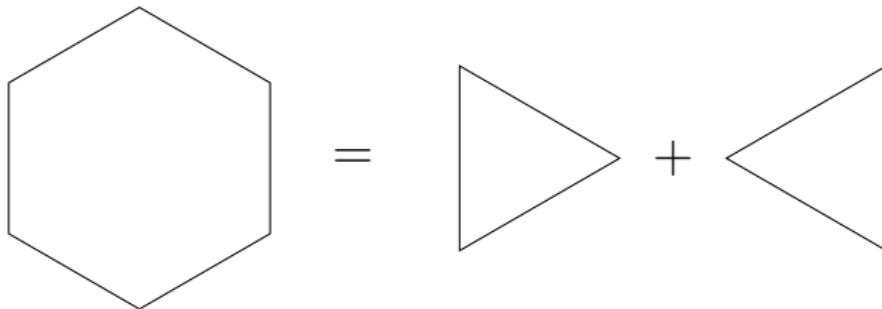
P, Q polytopes. *Minkowski sum*:

$$P + Q = \{p + q \ ; \ p \in P, q \in Q\}$$

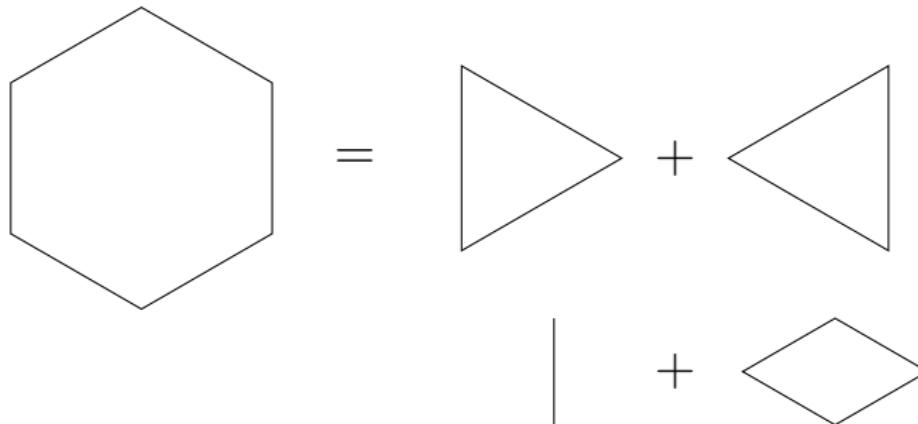
N.B. $\text{Vert}(P + Q) \subseteq \text{Vert}(P) + \text{Vert}(Q)$



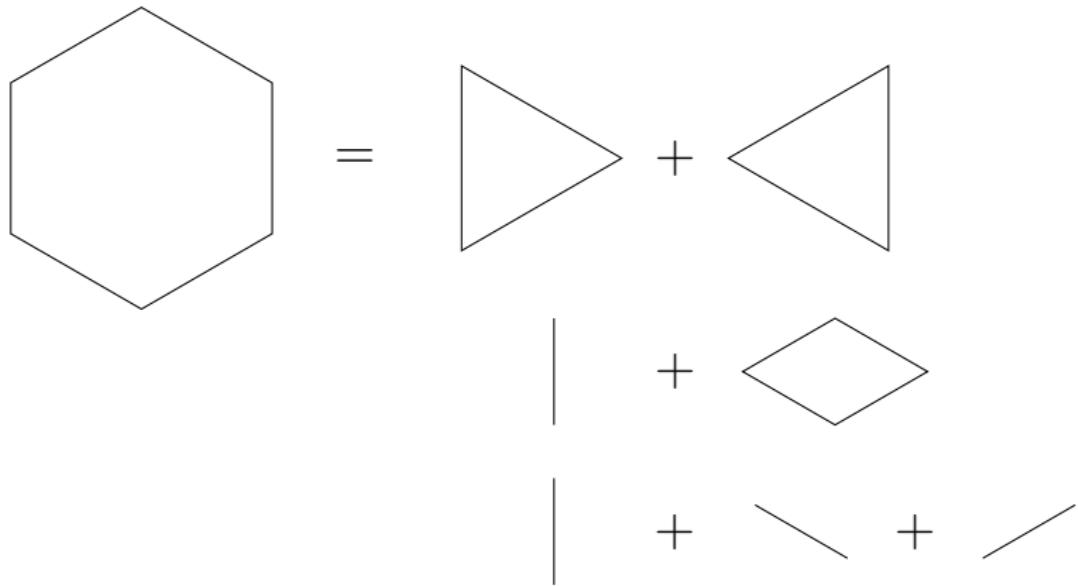
Minkowski sum



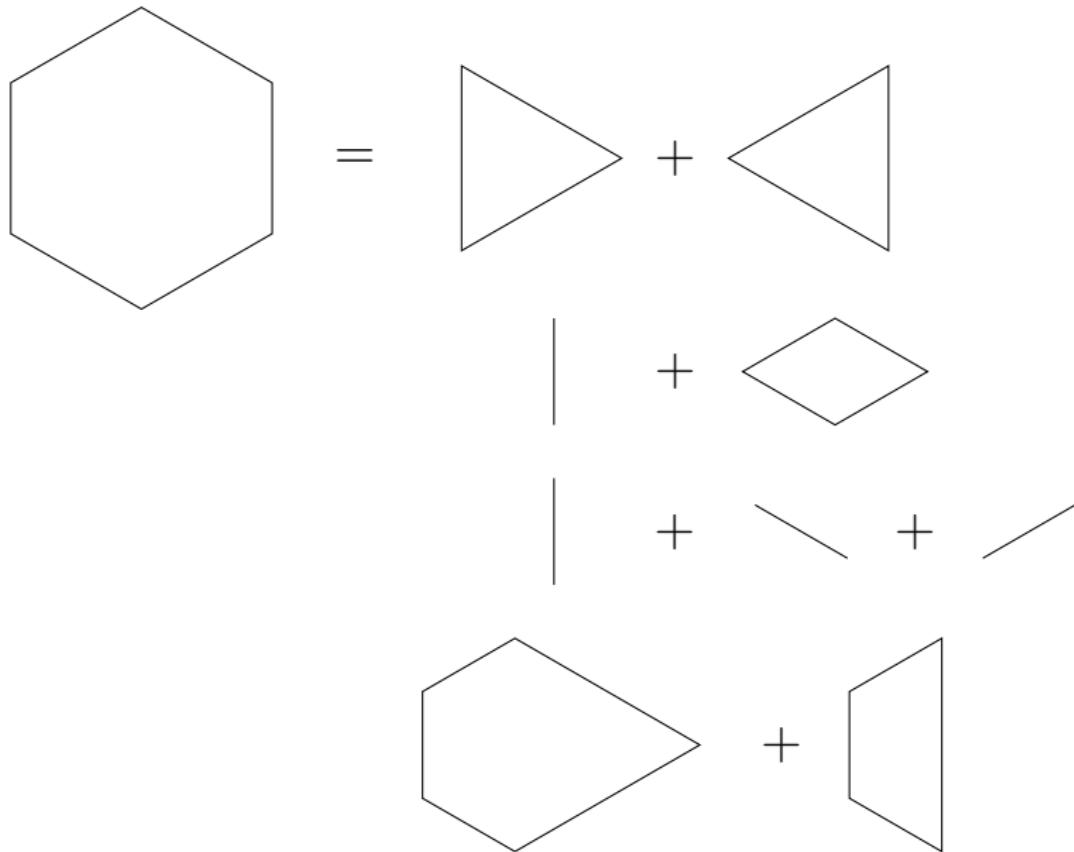
Minkowski sum



Minkowski sum



Minkowski sum



Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda P = Q + R$$

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda P = Q + R$$

Deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ is a deformation of } P\}$

Indecomposable: deformations of P are translated-dilations of P

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda P = Q + R$$

Deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ is a deformation of } P\}$

Indecomposable: deformations of P are translated-dilations of P

What is the best way to write P as a Minkowski sum ?

- With the fewest number of (indecomposable) summands ?
- With the (indecomposable) summands of smallest dimension ?
- Respecting some symmetries ?
- ...

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda P = Q + R$$

Deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ is a deformation of } P\}$

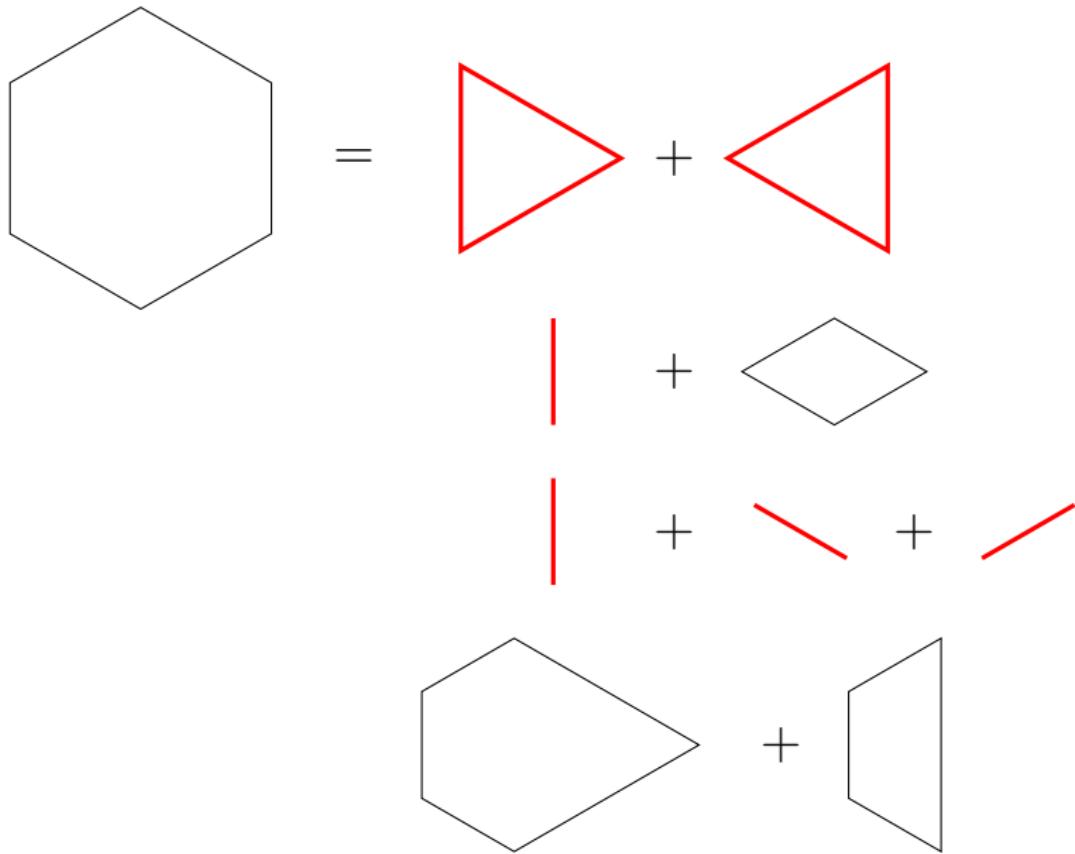
Indecomposable: deformations of P are translated-dilations of P

What is the best way to write P as a Minkowski sum ?

- With the fewest number of (indecomposable) summands ?
- With the (indecomposable) summands of smallest dimension ?
- Respecting some symmetries ?
- ...

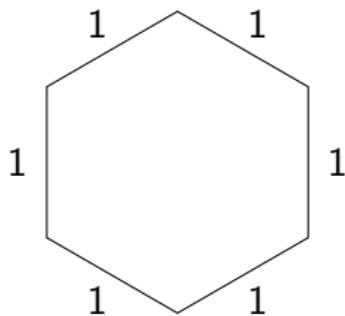
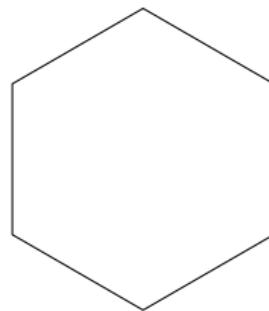
⇒ What is the structure of $\mathbb{DC}(P)$?

Minkowski summands



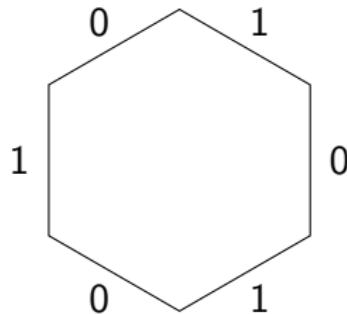
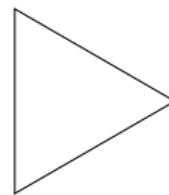
Observation

If $P = Q + R$, then the edges of P “are” edges of Q or of R .
⇒ I can write deformations of P using edge-length vectors.



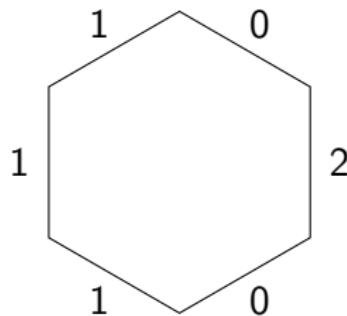
Observation

If $P = Q + R$, then the edges of P “are” edges of Q or of R .
⇒ I can write deformations of P using edge-length vectors.



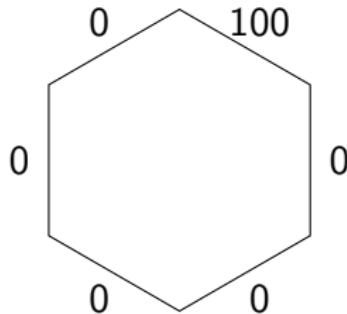
Observation

If $P = Q + R$, then the edges of P “are” edges of Q or of R .
⇒ I can write deformations of P using edge-length vectors.

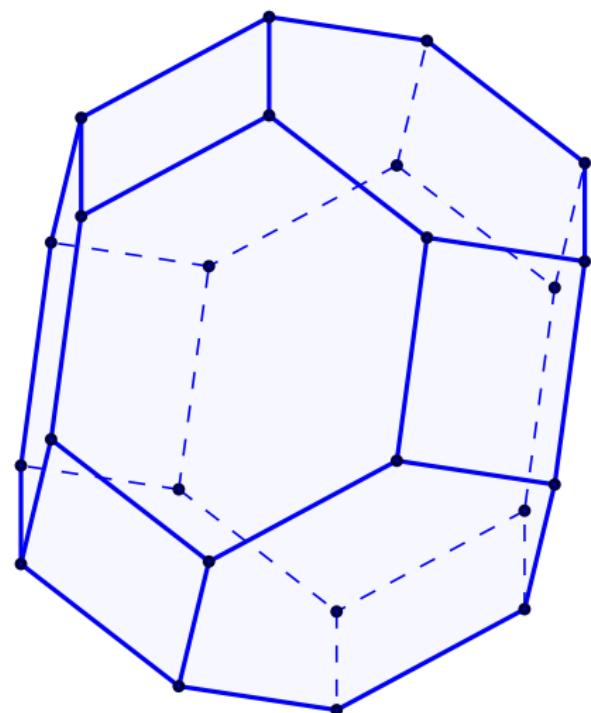


Observation

If $P = Q + R$, then the edges of P “are” edges of Q or of R .
⇒ I can write deformations of P using edge-length vectors.



Deformations of 3-dim permutohedron



Permutahedron Π_4

Sequence of deformations of Π_4

Edge-length deformation cone

Theorem

Q deformation of $P \Leftrightarrow$ same edge-directions, but different lengths

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ same edge-dir } P\}$

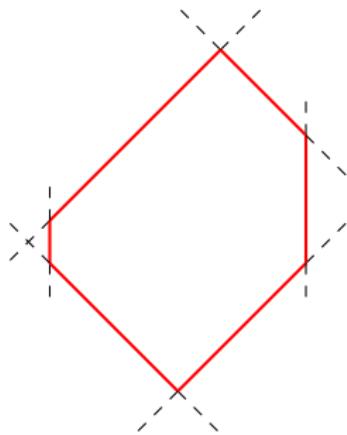
Edge-length deformation cone

Theorem

Q deformation of $P \Leftrightarrow$ same edge-directions, but different lengths

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ same edge-dir } P\}$



Parametrization:

edge-length vector:

$$\ell = (\ell_e)_{e \text{ edge}}$$

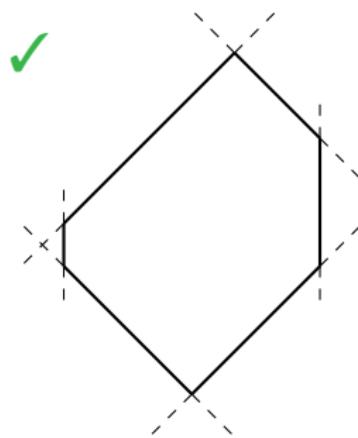
Edge-length deformation cone

Theorem

Q deformation of $P \Leftrightarrow$ same edge-directions, but different lengths

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ same edge-dir } P\}$



Parametrization:

edge-length vector:

$$\ell = (\ell_e)_{e \text{ edge}}$$

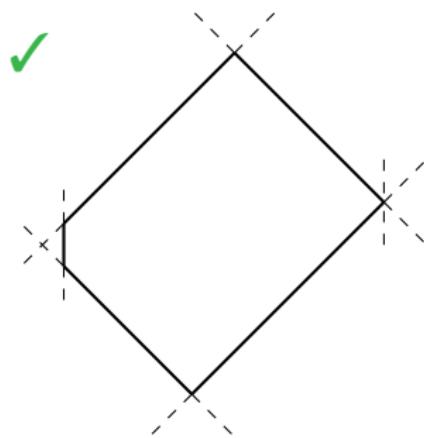
Edge-length deformation cone

Theorem

Q deformation of $P \Leftrightarrow$ same edge-directions, but different lengths

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ same edge-dir } P\}$



Parametrization:

edge-length vector:

$$\ell = (\ell_e)_{e \text{ edge}}$$

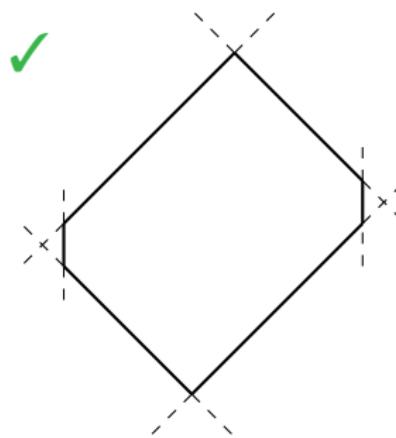
Edge-length deformation cone

Theorem

Q deformation of $P \Leftrightarrow$ same edge-directions, but different lengths

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ same edge-dir } P\}$



Parametrization:

edge-length vector:

$$\ell = (\ell_e)_{e \text{ edge}}$$

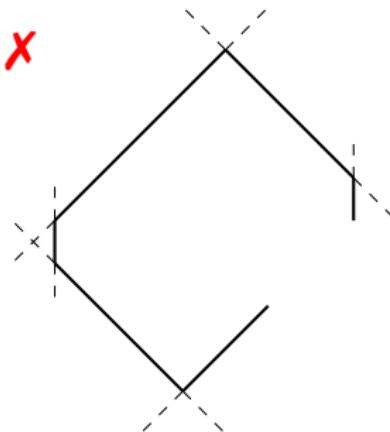
Edge-length deformation cone

Theorem

Q deformation of $P \Leftrightarrow$ same edge-directions, but different lengths

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ same edge-dir } P\}$



Parametrization:

edge-length vector:

$$\ell = (\ell_e)_{e \text{ edge}}$$

Cycle equations:

linear equations on ℓ

$$\ell_e \geq 0 \text{ for all } e \text{ edge}$$

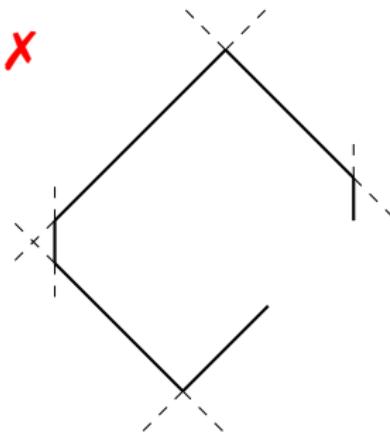
Edge-length deformation cone

Theorem

Q deformation of $P \Leftrightarrow$ same edge-directions, but different lengths

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ same edge-dir } P\}$



Parametrization:

edge-length vector:

$$\ell = (\ell_e)_{e \text{ edge}}$$

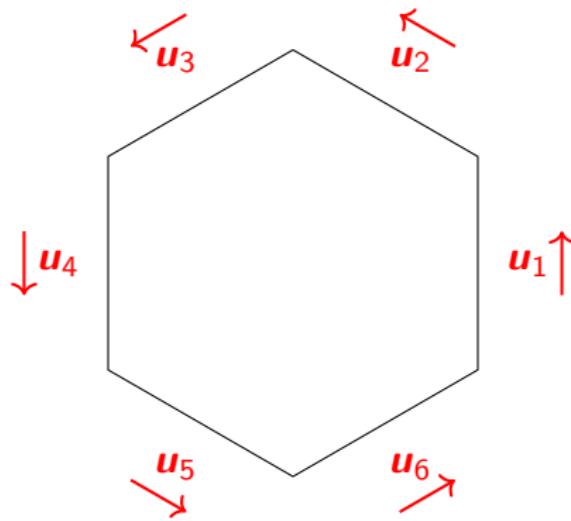
Cycle equations:

linear equations on ℓ

$$\ell_e \geq 0 \text{ for all } e \text{ edge}$$

$P_\ell =$ start at a vertex, find the coordinates of the other vertices from the graph of P and ℓ

Cycle equations



For F a 2-dim face of P :

$$\sum_e \mathbf{u}_e = \mathbf{0} \quad , \quad \mathbf{u}_e \text{ unit vector}$$

hence

$$\sum_e \ell_e \mathbf{u}_e = \mathbf{0}$$

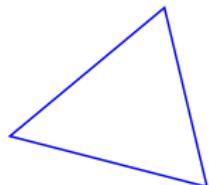
Summary on $\mathbb{DC}(P)$

$\mathbb{DC}(P)$		
Q Minkowski summands	ℓ edge-lengths	h heights on rays
$Q_1 + Q_2$	$\ell_1 + \ell_2$	$h_1 + h_2$
Dilation λQ	$\lambda \ell$	λh
Translations	Has been fixed	Lineal
<i>complicated</i>	edge directions Cycle equations V -description	normal fan \mathcal{N}_P Wall-crossing ineq. H -description
Polytope algebra	Weight algebra	Polynomial algebra

$\mathbb{DC}(P)$ is a ray = P Minkowski indecomposable

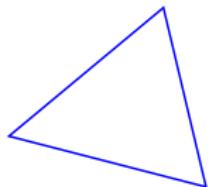
$\mathbb{DC}(P)$ is simplicial cone = P has **unique** Minkowski decomposition

Graph of edge dependencies



Triangle:

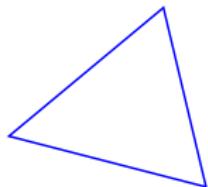
3 variables (= lengths of the edges)



Triangle:

3 variables (= lengths of the edges)

2 equations (= 1 equation in dimension 2)

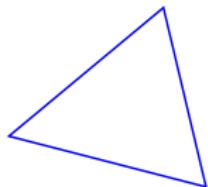


Triangle:

3 variables (= lengths of the edges)

2 equations (= 1 equation in dimension 2)

$\Rightarrow \dim(\text{space of solutions}) = 1$



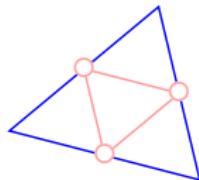
Triangle:

3 variables (= lengths of the edges)

2 equations (= 1 equation in dimension 2)

$\Rightarrow \dim(\text{space of solutions}) = 1$

\Rightarrow Indecomposable



Triangle:

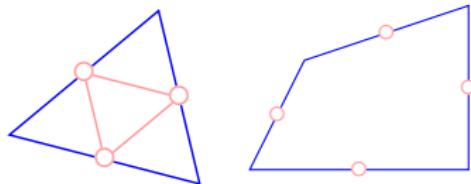
3 variables (= lengths of the edges)

2 equations (= 1 equation in dimension 2)

$\Rightarrow \dim(\text{space of solutions}) = 1$

\Rightarrow Indecomposable

\Rightarrow If I know the length of 1 edge, I know the length of the others.



Triangle:

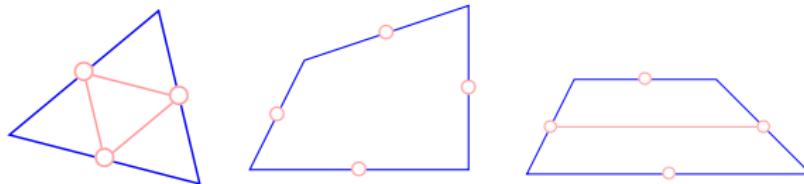
3 variables (= lengths of the edges)

2 equations (= 1 equation in dimension 2)

$\Rightarrow \dim(\text{space of solutions}) = 1$

\Rightarrow Indecomposable

\Rightarrow If I know the length of 1 edge, I know the length of the others.



Triangle:

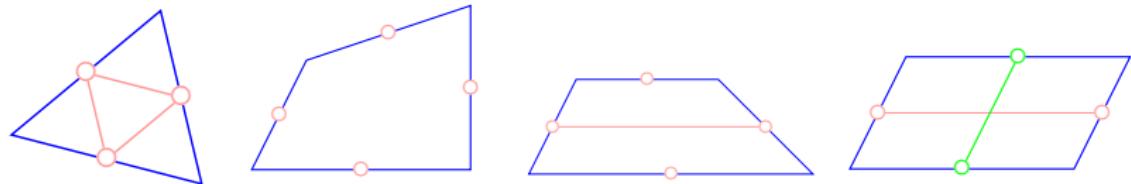
3 variables (= lengths of the edges)

2 equations (= 1 equation in dimension 2)

⇒ $\dim(\text{space of solutions}) = 1$

⇒ Indecomposable

⇒ If I know the length of 1 edge, I know the length of the others.



Triangle:

3 variables (= lengths of the edges)

2 equations (= 1 equation in dimension 2)

$\Rightarrow \dim(\text{space of solutions}) = 1$

\Rightarrow Indecomposable

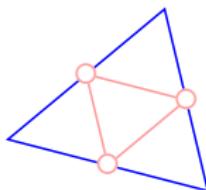
\Rightarrow If I know the length of 1 edge, I know the length of the others.

Graph of edge dependencies

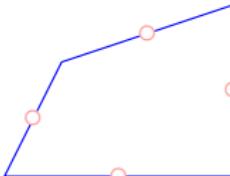
Graph of edge dependencies $ED(P)$:

nodes: edges of P

arcs: link two *dependent* edges, i.e. I can deduce the length of one from the length of the other, using the cycle equations



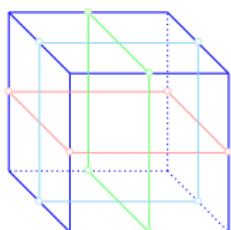
(a) Triangle



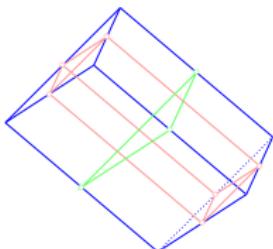
(b) Quadrilateral

(c) Trapezoid

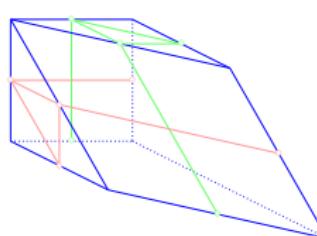
(d) Parallelogram



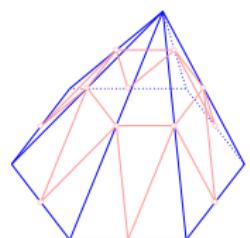
(e) Cube



(f) Prism



(g) Hemicube



(h) Pyramid

Problem 1:

How to find edges of $ED(P)$.

Problem 1:

How to find edges of $ED(P)$.

Problem 2:

If I have enough edges in $ED(P)$, what can I conclude on $\mathbb{DC}(P)$ or on the indecomposability of P ?

Problem 1:

How to find edges of $ED(P)$.

Problem 2:

If I have enough edges in $ED(P)$, what can I conclude on $\mathbb{DC}(P)$ or on the indecomposability of P ?

A Gale's criterion, '54

All 2-faces of P are triangles $\Rightarrow P$ indecomposable.

Problem 1:

How to find edges of $ED(P)$.

Problem 2:

If I have enough edges in $ED(P)$, what can I conclude on $\mathbb{DC}(P)$ or on the indecomposability of P ?

A Gale's criterion, '54

All 2-faces of P are triangles $\Rightarrow P$ indecomposable.

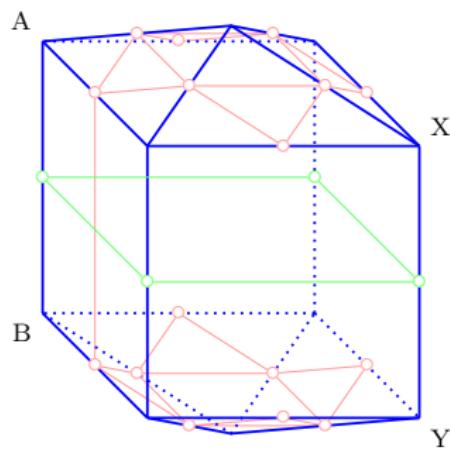
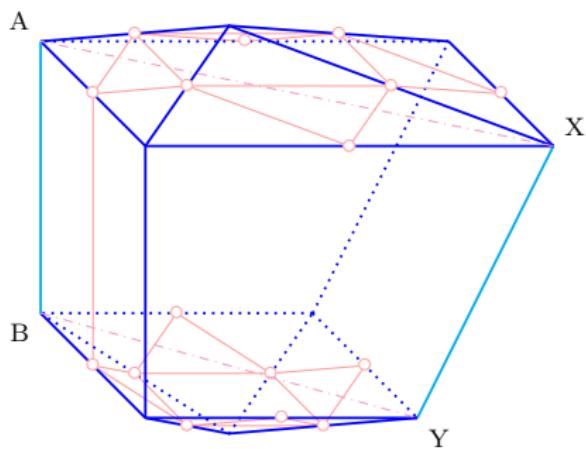
“triangles” \rightarrow edges in $ED(P)$

“all 2-faces” \rightarrow enough edges in $ED(P)$

Problem 1: creating edges

In $ED(P)$, two nodes e, f (\in edges of P) are linked if, e.g.:

- in a common triangle (not necessarily a 2-face),

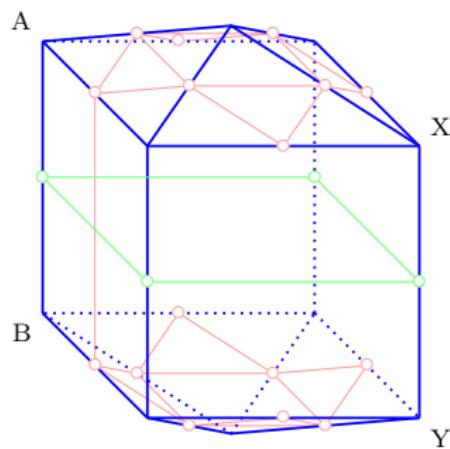
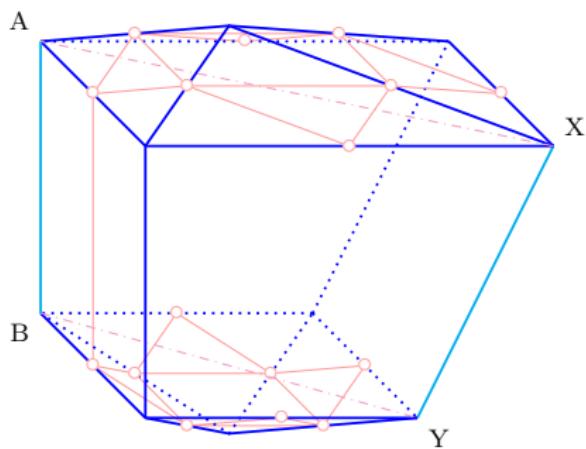


Problem 1: creating edges

In $ED(P)$, two nodes e, f (\in edges of P) are linked if, e.g.:

- in a common triangle (not necessarily a 2-face),

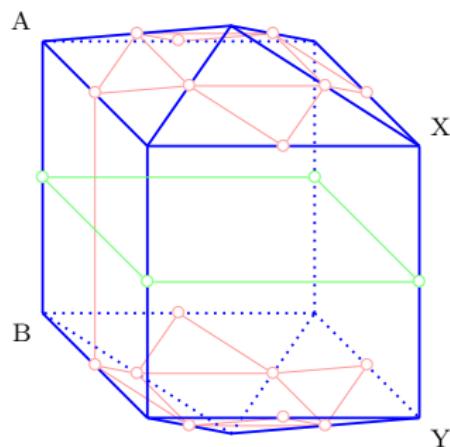
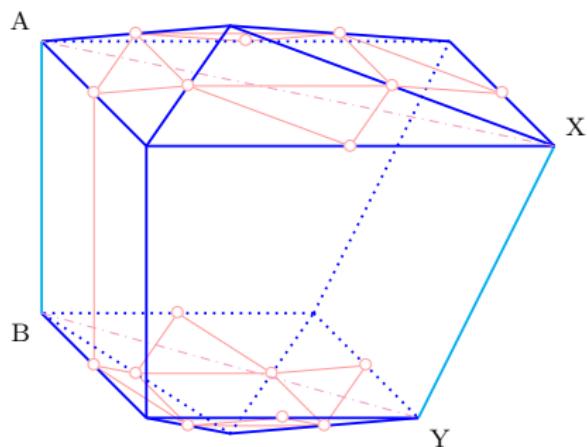
- are opposite in a trapezoid,



Problem 1: creating edges

In $ED(P)$, two nodes e, f (\in edges of P) are linked if, e.g.:

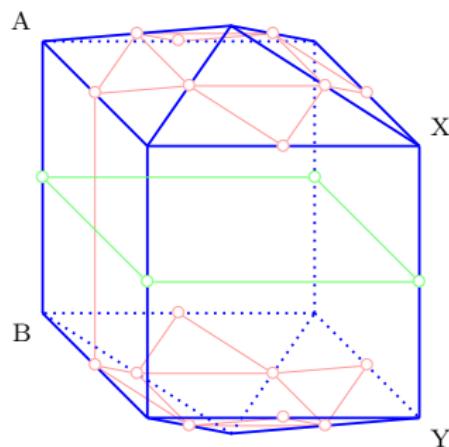
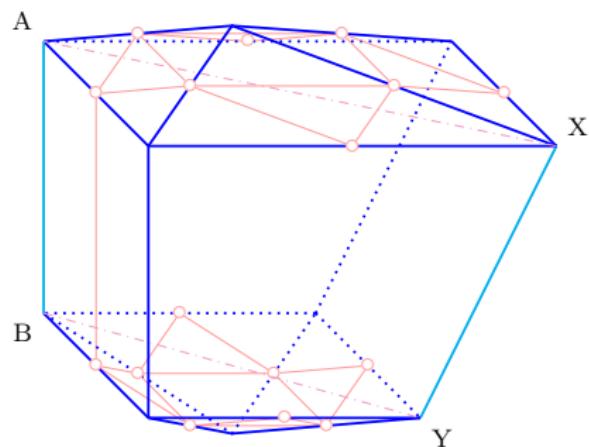
- in a common triangle (not necessarily a 2-face),
- belong to a cycle of edges which spans a full-dim space,
- are opposite in a trapezoid,



Problem 1: creating edges

In $ED(P)$, two nodes e, f (\in edges of P) are linked if, e.g.:

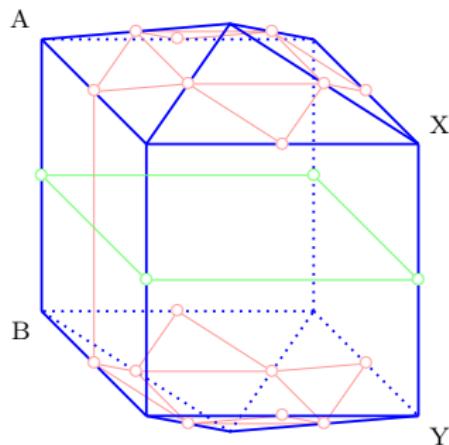
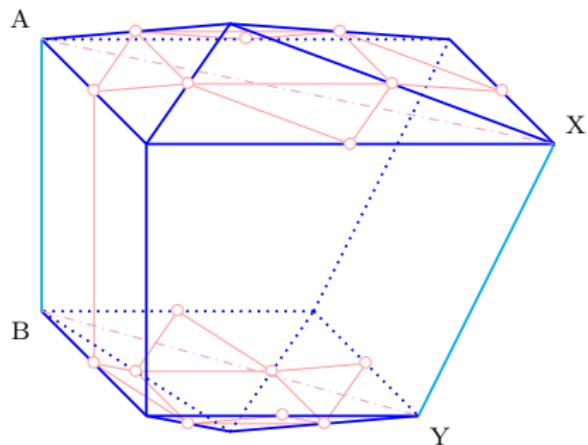
- in a common triangle (not necessarily a 2-face),
- belong to a cycle of edges which spans a full-dim space,
- belong to an indecomposable sub-graph of P ,
- are opposite in a trapezoid,



Problem 1: creating edges

In $ED(P)$, two nodes e, f (\in edges of P) are linked if, e.g.:

- in a common triangle (not necessarily a 2-face),
- belong to a cycle of edges which spans a full-dim space,
- belong to an indecomposable sub-graph of P ,
- are opposite in a trapezoid,
- are in a sub-graph of P which projects down to indecomposable,

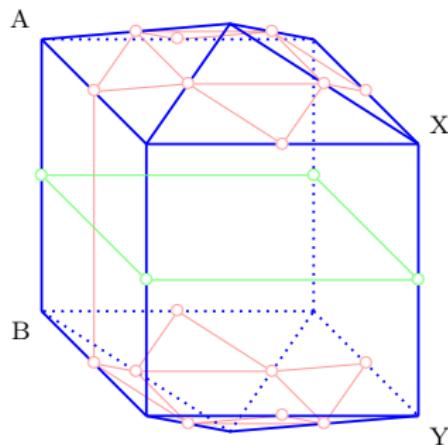
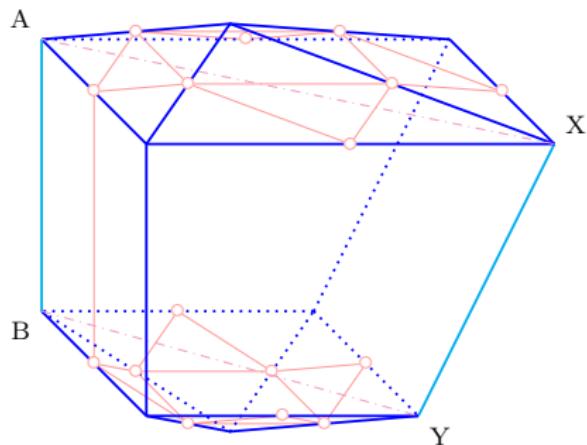


Problem 1: creating edges

In $ED(P)$, two nodes e, f (\in edges of P) are linked if, e.g.:

- in a common triangle (not necessarily a 2-face),
- belong to a cycle of edges which spans a full-dim space,
- belong to an indecomposable sub-graph of P ,
- are opposite in a trapezoid,
- are in a sub-graph of P which projects down to indecomposable,
- ... (there is a nicer way to write these properties)

+ implicit edges



Problem 2: consequences of $ED(P)$

Theorem (Padrol–P. '25)

If $ED(P)$ is connected, then P is indecomposable

Problem 2: consequences of $ED(P)$

Theorem (Padrol–P. '25)

If $ED(P)$ is connected, then P is indecomposable

$S \subseteq V(P)$ is *dependent* if for all $u, v \in S$, there is a path (in $G(P)$) of dependent edges between u and v .

Theorem (Padrol–P. '25)

If there exists a set S of dependent vertices such that every facet contains a vertex of S , then P is indecomposable.

Problem 2: consequences of $ED(P)$

Theorem (Padrol–P. '25)

If $ED(P)$ is connected, then P is indecomposable

$S \subseteq V(P)$ is *dependent* if for all $u, v \in S$, there is a path (in $G(P)$) of dependent edges between u and v .

Theorem (Padrol–P. '25)

If there exists a set S of dependent vertices such that every facet contains a vertex of S , then P is indecomposable.

Corollaries: Gale '54, Shepard '63, Kallay '82, McMullen '87, Yost–Przesławski '08 & '16 criteria...

Corollary (Padrol–P. '25)

If there is $S \subseteq V(P)$, and X_1, \dots, X_r dependent sets of edges with

- *any two vertices of S are connected via $\bigcup_i X_i$, and*
- *every facet of P contains a vertex of S ,*

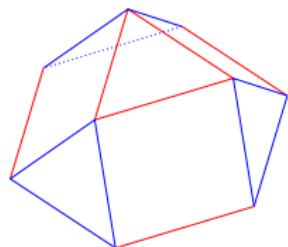
then: $\dim \mathbb{DC}(P) \leq r$.

Corollary (Padrol–P. '25)

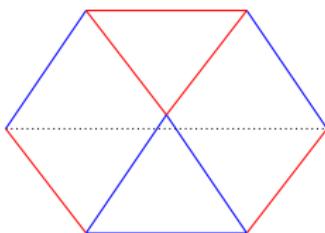
If there is $S \subseteq V(P)$, and X_1, \dots, X_r dependent sets of edges with

- any two vertices of S are connected via $\bigcup_i X_i$, and
- every facet of P contains a vertex of S ,

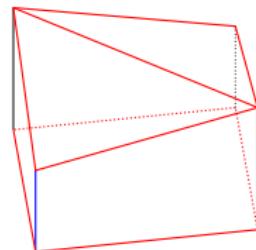
then: $\dim \mathbb{DC}(P) \leq r$.



(a) Triang. cupola

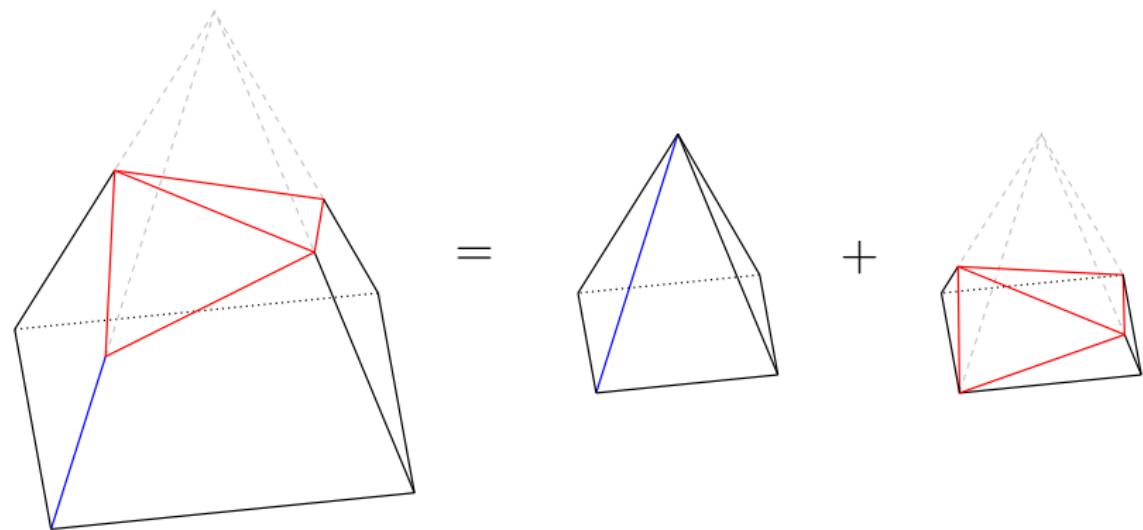


(b) Sum of 2 triangles



(c) Chiseled cube

$\dim \mathbb{DC}(P) = 2$, only one Minkowski decomposition (in 2 terms)



$\dim \mathbb{DC}(P) = 2$, this is the only Minkowski decomposition

New indecomposable generalized permutohedra

Generalized permutohedra: edge directions are $e_i - e_j$ for $i \neq j$

Edmonds problem '70: find all indecomposable gene. permut.

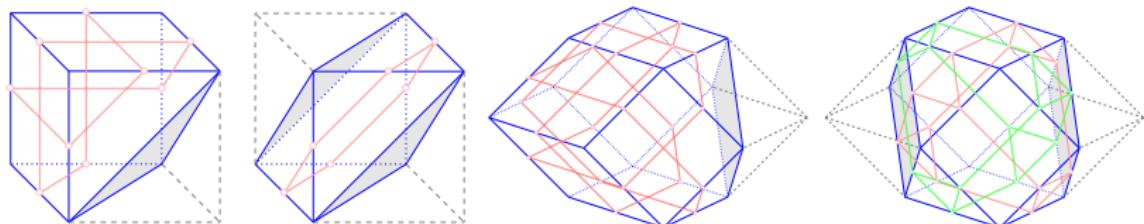
New indecomposable generalized permutohedra

Generalized permutohedra: edge directions are $\mathbf{e}_i - \mathbf{e}_j$ for $i \neq j$
Edmonds problem '70: find all indecomposable gene. permut.

The *graphical zonotope* of $G = (V, E)$ is: $Z_G = \sum_{ij \in E} [\mathbf{e}_i, \mathbf{e}_j]$

Theorem (Padrol–P. '25)

For all complete bipartite graphs $K_{n,m}$ (except $n = m = 2$), it is possible to truncate 1 or 2 vertices of $Z_{K_{n,m}}$ to obtain an indecomposable generalized permutohedron.



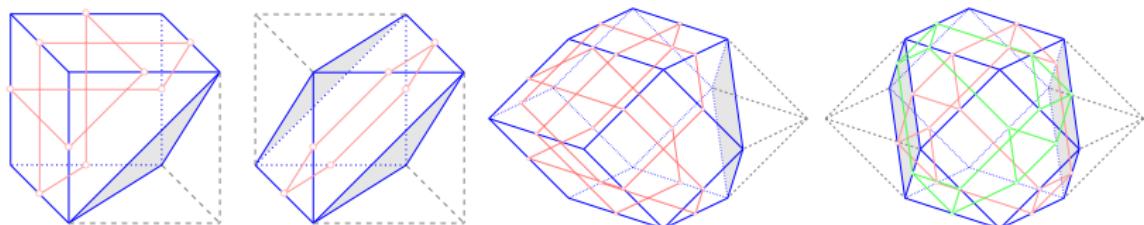
New indecomposable generalized permutohedra

Generalized permutohedra: edge directions are $\mathbf{e}_i - \mathbf{e}_j$ for $i \neq j$
Edmonds problem '70: find all indecomposable gene. permuto.

The *graphical zonotope* of $G = (V, E)$ is: $Z_G = \sum_{ij \in E} [\mathbf{e}_i, \mathbf{e}_j]$

Theorem (Padrol–P. '25)

For all complete bipartite graphs $K_{n,m}$ (except $n = m = 2$), it is possible to truncate 1 or 2 vertices of $Z_{K_{n,m}}$ to obtain an indecomposable generalized permutohedron.



This gives $2 \left\lfloor \frac{n-1}{2} \right\rfloor$ new indecomposable gene. permutohedra

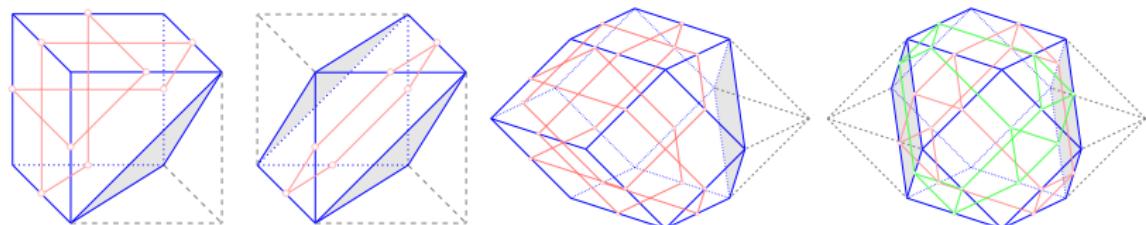
New indecomposable generalized permutohedra

Generalized permutohedra: edge directions are $\mathbf{e}_i - \mathbf{e}_j$ for $i \neq j$
Edmonds problem '70: find all indecomposable gene. permut.

The *graphical zonotope* of $G = (V, E)$ is: $Z_G = \sum_{ij \in E} [\mathbf{e}_i, \mathbf{e}_j]$

Theorem (Padrol–P. '25)

For all complete bipartite graphs $K_{n,m}$ (except $n = m = 2$), it is possible to truncate 1 or 2 vertices of $Z_{K_{n,m}}$ to obtain an indecomposable generalized permutohedron.



This gives $2 \left\lfloor \frac{n-1}{2} \right\rfloor$ new indecomposable gene. permutohedra

Loho–Padrol–P.'25: we create $2^{2^{n-2}}$ indecomposable gene. permut.

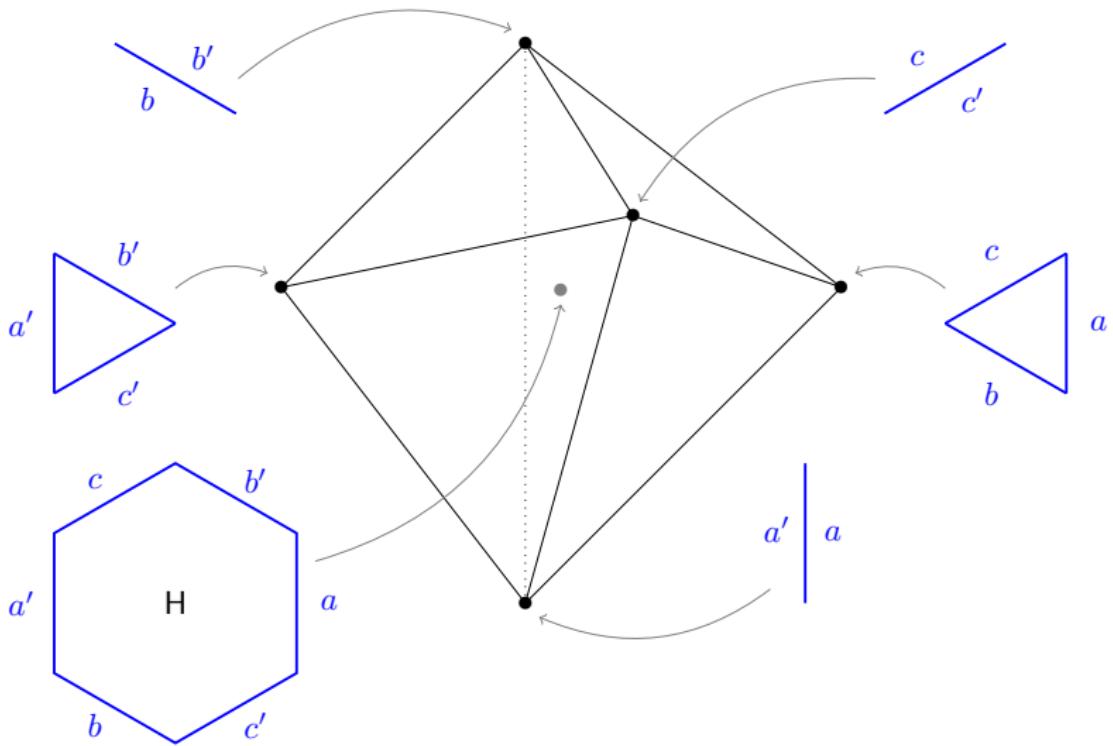
Other applications:

- parallelogramic Minkowski sums, product of polytopes
- “autonomous and dependent” parts of $ED(P)$ give rays of $\mathbb{DC}(P)$
- you can stack/delete vertices on polytopes, study indecomposability
- you can deal with zonotopes whose 2-faces are parallelograms
- new proof: matroid pol. indecomposable \Leftrightarrow matroid connected
- you use combinatorics on regular polytopes instead of geometry
- ...

Other applications:

- parallelogramic Minkowski sums, product of polytopes
- “autonomous and dependent” parts of $ED(P)$ give rays of $\mathbb{DC}(P)$
- you can stack/delete vertices on polytopes, study indecomposability
- you can deal with zonotopes whose 2-faces are parallelograms
- new proof: matroid pol. indecomposable \Leftrightarrow matroid connected
- you use combinatorics on regular polytopes instead of geometry
- ...

Be careful, $ED(P)$ is not always sufficient for recovering $\mathbb{DC}(P)$.



Merci !

Thank you!

Bonus slides...

What else do I do?

Submodular cone: “Many rays of the submodular cone”

Linear programming: “Vertices of the monotone path polytopes of hypersimplices” & “Pivot polytopes of products of simplices and shuffles of associahedra”

Random polytopes: “Unimodality of the number of paths per length on polytopes: Examples, counter-examples, and central limit theorem”

Ehrhart theory, triangulations: “Ehrhart non-positivity and unimodular triangulations for classes of s-lecture hall simplices”

3D polytopes, framing lattices, polytope/weight algebra, hypergraphs, Grey codes,...

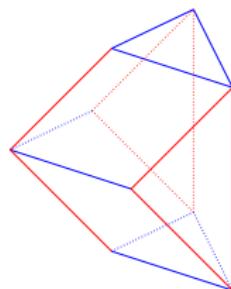
Anything that might contain a polytope somewhere is interesting !!

Parallelogramic Minkowski sums

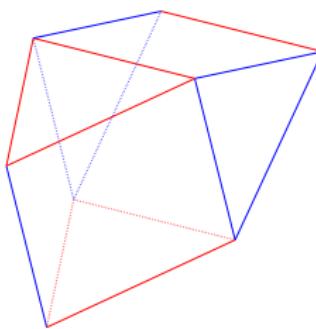
P, Q are in *parallelogramic position* if no edge of P is in a plane spanned by the 2-faces of Q

Theorem (Padrol–P. '25)

P, Q in parallelogramic position: $\mathbb{DC}(P + Q) \simeq \mathbb{DC}(P) \times \mathbb{DC}(Q)$.



(a) Diminished trapezohedron



(b) Gyrobifastigium

Corollary (Padrol–P. '25)

$$\mathbb{DC}(P \times Q) \simeq \mathbb{DC}(P) \times \mathbb{DC}(Q)$$